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Abstract

This case study evaluated the effect of implanted multi-joint neuromuscular electrical stimulation 

(NMES) gait assistance on oxygen consumption relative to walking without NMES after stroke. 

The participant walked slowly with an asymmetric gait pattern after stroke. He completed repeated 

six-minute walk tests at a self- selected walking speed with and without hip, knee and ankle 

stimulation assistance. His walking speed with NMES more than doubled from 0.28±0.01 m/s to 

0.58±0.04 m/s while average step length and cadence increased by 0.12 m and 24 steps/min, 

respectively. As a result, energy cost of walking with NMES decreased by 0.19 ml O2/kg/m as 

compare to walking without stimulation while oxygen consumption increased by 1.1 METs (3.9 

ml O2/kg/min). These metabolic demands are similar to those reported for stroke survivors capable 

of walking at equivalent speeds without stimulation, suggesting the increase in oxygen 

consumption and decreased energy cost result from improved efficiency of faster walking 

facilitated by NMES. While the effect of NMES on gait economy has implications for community 

walking within the user’s metabolic reserves, this case study’s results should be interpreted with 

caution and the hypothesis that multi-joint NMES improves metabolic efficiency should be tested 

in a wide population of stroke survivors with varied deficits.
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I. Introduction

Many stroke survivors walk slowly and are at an increased risk of falls1. Clinically 

prescribed assistive devices primarily focus on assisting ankle dorsiflexion by means of 

ankle foot orthoses (AFO) or peroneal nerve stimulation (PNS) to ensure swing foot 
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clearance to prevent tripping2,3. Alternatively, or in addition, stroke survivors often adopt 

compensatory strategies such as hip hiking and circumduction to compensate for increased 

extensor tone, drop foot, and weak knee and hip flexion and joint incoordination. Although 

assistive devices prevent drop foot2, they do not provide substantial assistance at the hip and 

knee joints2,3 or generate clinically significant improvements in walking speed (>0.2 m/s)4,5. 

In a recent case report, neuromuscular electrical stimulation (NMES) to activate muscles 

controlling multiple joints during gait significantly increased walking speed6. While 

increased walking speed is related to functional independence and community ambulation, 

patients are unlikely to adopt assistive devices that significantly increase metabolic effort7. 

Considering stroke survivors already expend more energy to maintain the same walking 

speeds as their able-bodied counterparts8–12 it is worthwhile to determine whether 

neuromuscular stimulation facilitating faster walking creates an undue metabolic demand. A 

study showed walking with PNS resulted in similar metabolic energy expenditure and 

energy cost as walking with an ankle foot orthosis, therefore stimulation alone did not 

significantly affect oxygen consumption13. While PNS assists primarily with dorsiflexion, 

additional stimulation for hip and knee flexion that significantly increased walking speed6 

may also significantly affect energy consumption. Although faster gait speeds are expected 

to increase energy consumption and decrease energy cost, it is not clear how these effects 

change in response to stimulation increasing walking speed. Stimulation could reduce 

relative oxygen consumption by reducing gait inefficiencies stroke survivors often exhibit. 

Alternatively, poorly timed over stimulation could increase relative oxygen consumption. If 

assistive devices, such as a neural stimulation system, substantially increase energy 

expenditure beyond levels associated with increased gait speed, they may be more 

appropriate for exercise and may not be realistic for daily community ambulation. This study 

evaluated changes in oxygen consumption when walking with implanted multi-joint NMES 

assistance in a single stroke survivor. Implanted electrodes were used in this study because 

they more selectively recruit target muscles that are difficult to activate with surface 

electrodes while bypassing skin sensory fibers, reducing discomfort. Implanted electrodes 

also simplify donning and doffing to facilitate daily use. We hypothesized that applying 

NMES to assist hip, knee, and ankle movement to increase gait speed would improve 

metabolic efficiency of gait within the user’s metabolic reserves for community ambulation.

II. Methods

Study participant

A 69-year old male, 1.9 m tall, weighing 108 kg (Body Mass Index=29.0 kg/m2), 6 years 

post stroke participated in this study. He suffered a hemorrhagic stroke resulting in left sided 

hemiparesis including weakness throughout the lower limb with hypertonia presenting as an 

extensor synergy pattern and spasticity in response to passive stretching. He did not report 

any pain. He walked slowly with a step-to gait pattern. Steps were asymmetric with shorter 

steps with his less involved leg. He used a cane for balance and wore an ankle foot orthosis 

(AFO) to prevent foot drop. He was implanted with an 8-channel implanted pulse generator 

(IPG) which improved his walking speed and endurance6. Intramuscular electrodes were 

inserted near the nerves innervating muscles to ameliorate his deficits of weak hip and knee 

flexion and extension, and ankle dorsi and plantar flexion: 1) tensor fasciae latae, 2) 
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sartorius, 3) gluteus maximus, 4) quadriceps, 5) tibialis anterior, 6) peroneus longus, 7) short 

head of biceps femoris (SHBF), and 8) gastrocnemius. Electrode leads were routed to the 

IPG subcutaneously.

NMES device

An external control unit provided the IPG power and stimulus timing by means of Radio-

Frequency (RF) transmission coupling. Gastrocnemius and SHBF were not incorporated into 

the stimulation pattern due to 1) difficulties establishing proper timing of gastrocnemius 

stimulation for push-off and 2) stimulus spill over to triceps surae when stimulating SHBF 

during initial swing. Swing and stance phase stimulation patterns were triggered via a heel 

switch placed inside the AFO. Heel off and heel strike initiated stimulation for swing and 

stance phase, respectively. Once the gait event was detected, the next stimulation phase was 

initiated as shown in Figure 1.

Written informed consent approved by the Louis Stokes Cleveland Veterans Affairs Medical 

Center Institutional Review Board was obtained prior to study initiation. The implanted 

NMES device has an Investigational Device Exemption approval by the United States Food 

and Drug Administration for research use only. This study conforms to all CARE guidelines 

and reports the required information accordingly (see Supplementary Checklist).

Data collection

Oxygen consumption was measured with a K4b2 Metabolic Analyzer (Cosmed, Italy) on 3 

different days during 6-minute walks14. Each walk was completed in hallways free from 

obstacles. The shortest walkway was over 90 m long, requiring one or two wide turns 

depending on walking speed. The subject walked in random order with and without 

stimulation each day with five total trials under each condition. Walking speed was not 

controlled; he walked at a self-selected speed in each condition. At least six minutes of rest 

were provided between walks. Resting heart rate was measured prior to each walk to 

confirm it reached the resting level before initiating each trial. Data for analysis was 

averaged over the last two minutes of each walk during steady state metabolic energy 

consumption. In addition, distance was measured and the number of steps were counted 

during each walk to calculate walking speed, cadence and average step length. Heart rate 

(HR) in beats per minute (BPM) was measured manually before and immediately after each 

walk. All activities were approved by the local Institutional Review Board. The registry 

number is NCT01570816.

Data analysis

Metabolic energy and gait outcome measures were calculated for the last two-minute period 

of each 6-minute walk. Metabolic energy was analyzed as oxygen consumption in Metabolic 

Equivalent of Task (MET) (1MET = 3.5 ml of O2/kg/min) which is oxygen consumed over 

time and energy cost of transport (ml of O2/kg/meter(m)) which is oxygen consumed as a 

function of distance walked. Data were checked for normality. Differences in outcome 

measures between walking with and without stimulation were tested for significant changes 

using a Student’s t-test (p<0.05).
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III. Results

The study participant walked significantly faster (0.3 m/s) with stimulation (0.58±0.04 m/s) 

than without stimulation assistance (0.28±0.01 m/s) as shown in Table 1. Stimulation 

assistance enabled him to transition from a step-to to a reciprocal gait pattern. Average step 

length increased by 0.12 m and cadence increased by 24 steps/min while walking with 

stimulation assistance as compared to no stimulation. Oxygen consumption increased by 1.1 

METs (3.9 ml O2/kg/min) while energy cost decreased by 0.19 ml O2/kg/m when walking 

with stimulation. All changes were statistically significant (p<0.05). There were no adverse 

events during the course of this study.

IV. Discussion

The individual walked twice as fast with stimulation assisting hip, knee, and ankle 

movement than with an AFO without stimulation. Cadence and step length increased 

commensurate with increases in walking speed. Energy cost decreased by 32% with 

increased walking speed while energy expenditure increased by 28% compared to walking 

without stimulation.

Oxygen consumption in stroke survivors

Since maximal oxygen uptake (VO2 max) was not measured, user reserve effort was based 

on available values in the literature. User reserve effort is the oxygen capacity between 

resting consumption and maximum consumption. Deconditioned stroke survivors reported 

VO2 max of 19.0 ml of O2/kg/min (5.4 METs) at an average speed of 0.76 m/s while 

walking at an average incline of 11%15. Assuming similar conditioning, our participant was 

using ~68% of his user reserve effort with stimulation.

Energy expenditure and energy cost of walking without stimulation assistance were similar 

to those reported in stroke survivors walking at comparable speeds (0.28m/s)11,16–20. Two 

studies both with average walking speeds of 0.27 m/s on a treadmill reported energy 

expenditures of 10.3 and 10.8 ml of O2/kg/min (~3METs)16,18 which is comparable to the 

10.1 ml of O2/kg/min reported here without stimulation.

While walking with stimulation assistance (0.58m/s), energy expenditure and energy cost 

were similar to those reported in studies of stroke survivors walking at comparable speeds 

without stimulation11,20–25. Two studies reporting similar walking speeds had oxygen 

consumption above resting values of 10.2 and 8.5 ml of O2/kg/min respectively, which are 

slightly lower than 10.9 ml of O2/kg/min shown here walking with stimulation24,25. A subset 

of individuals in another study walking at a comparable average speed consumed an average 

of 12.9 (±2.6) ml of O2/kg/min21, with some individuals wearing a partial body weight 

support, comparable to 14.0 ml of O2/kg/min in our participant walking with stimulation. 

Studies reporting energy cost of walking at similar speeds without stimulation also showed 

similar results as ours walking with NMES20,27. These results suggest that the addition of 

stimulation assistance to improve walking speed by increased cadence and step length does 

not significantly increase the metabolic burden of walking beyond the increase normally 

observed in higher functioning stroke survivors.
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Relevance to exercise

While increased oxygen consumption means the participant worked harder to maintain a 

faster speed, it also provides an opportunity for exercise he may not otherwise have. The 

participant reported enjoying walking with stimulation assistance, in part because walking 

with stimulation was a form of exercise that incorporated his paretic limb and enabled him 

to walk significantly faster as compared to without stimulation. In addition to increased 

function and mobility, multi-joint NMES provides another opportunity to walk for exercise, 

which is important for maintaining cardiovascular health, especially in a patient population 

that is at a greater risk of a sedentary lifestyle and deconditioning28. Based on a VO2 max of 

19.0 ml O2/kg/min for population matched stroke survivors, he would be at 68% of his 

reserve while walking with stimulation assistance, which is within the limits recommended 

for aerobic exercise29,30. However, his effort walking without stimulation would be at 44% 

of his metabolic reserve, which is below the level recommended for aerobic exercise. While 

other exercise modalities such as recumbent bicycling can elicit necessary metabolic load31 

and incorporate neural stimulation32, stimulation assisted walking provides another 

opportunity to walk and exercise and could reduce the negative effects of a sedentary 

lifestyle by increasing muscle mass and improving cardiovascular health and quality of life.

Limitations

The primary limitation of this study was that VO2 max was not measured in this study, 

requiring estimates of oxygen reserve based on available literature. Since the participant in 

this study walked at different speeds with and without stimulation assistance, we are 

similarly limited to comparisons within the literature of stroke survivors walking at matched 

speeds. Although this study provides insight into the impact of implanted multi-joint NMES 

on energy consumption and cost, it is limited to a single individual with stimulation applied 

to a specific set of muscles and does not generalize to stroke survivors or to multi-joint 

implanted or surface NMES in general. Incorporating additional muscles into the stimulation 

pattern with a more sophisticated control algorithm could potentially improve walking speed 

and efficiency. While the individual increased his walking distance with stimulation 

assistance over time6, the impact of implanted multi-joint NMES training on VO2 max was 

not measured either.

Conclusions

An implanted multi-joint neuromuscular stimulation system in a stoke survivor decreased 

energy cost with increased oxygen consumption commensurate with significantly increased 

walking speed. Comparison to the literature suggests changes in energy consumption and 

energy cost primarily result from faster walking rather than a change in metabolic 

inefficiency of NMES. Additional study with comparisons at matched speeds and VO2 max 

measurements on a larger population of stroke survivors with various gait deficits are 

necessary to validate these conclusions and generalize the results. Faster walking speeds 

represent potential increased community access4 and metabolic demands may facilitate 

secondary health benefits through walking exercise.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Stimulation pattern with left leg muscle activation timing relative to gait events (HS – Heel 

Strike, HO – Heel Off). Vertical lines indicate average timing of subsequent gait event 

detection. Stimulation phase transitions occur immediately following heel switch detection 

(HS and HO).
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Table 1:

Outcome Measures of Metabolic Analysis and Gait

Outcome At rest mean (SD) Volitional mean (SD) Stimulation mean (SD) P value

Energy expenditure (METs) 0.84 (0.12) 2.9 (0.2) 4.0 (0.4) <0.01

(ml of O2/kg/min) 3.1 (0.4) 10.1 (0.8) 14.0 (1.3) <0.01

Energy cost (ml of O2/kg/m) N/A 0.59 (0.05) 0.40 (0.04) <0.01

Walking speed (m/s) N/A 0.28 (0.01) 0.58 (0.04) <0.01

Cadence (steps/min) N/A 45.5 (2.6) 69.4 (3.8) <0.01

Average Step Length (m) N/A 0.38 (0.05) 0.50 (0.05) <0.01

Heart rate (BPM) 64 96 103 0.04
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